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Summary

We introduce a formal testing procedure to assess the goodness-of-fit of a fitted

inhomogeneous spatial Poisson process model. Our method is based on a discrepancy

measure function Dc(t; θ̂) that is constructed by using residuals obtained from the fitted

model. We derive the asymptotic distributional properties of Dc(t; θ̂) and then develop

a test statistic based on these properties. Our test statistic has a limiting standard

normal distribution so the test can be performed by simply comparing the test statistic

with critical values obtained from the standard normal distribution. We perform a

simulation study to assess the performance of the proposed method and apply it to a

real data example.

Some key words: Goodness-of-fit test; Inhomogeneous spatial Poisson process; Residual

diagnostics.

Short Title. Goodness-of-Fit Test for Poisson Processes.

1. Introduction

Spatial Poisson processes play an important role in both statistical theories (Daley

& Vere-Jones, 1988, Ch. 2) and applications (Diggle, 2003, Ch. 2). A main interest

for spatial Poisson processes has been concerned with testing for complete spatial ran-

domness, i.e., if a process is homogeneous Poisson. For this a large number of testing

methods have been proposed. For a survey of the results see Cressie (1993, Ch. 8) and

Diggle (2003, Ch. 2).

In recent years, many carefully collected spatial point pattern data have become

available where not only the spatial point pattern itself but also detailed covariates in-

formation associated with it are recorded. As a result, it becomes possible and in fact



often necessary to model the observed spatial point pattern in terms of the observed

covariates. To do so the underlying spatial point process has to be treated as inhomo-

geneous. For many of these data examples, an inhomogeneous spatial Poisson process

model appears to be appropriate since the correlation in the data may be negligible,

e.g., locations of cancer patients in a region (Diggle, 1990), of human-caused wildfire

in a highland (Yang et al., 2007), and of reseeders after a fire given the locations of

resprouters in a forest (Illian et al., 2007). The main modeling task is to estimate the

intensity function of the process, which is often written as a parametric function of the

observed covariates. Maximum likelihood estimation in general can be performed with

ease by using the computationally efficient algorithm of Berman and Turner (1992).

The large sample properties of the resulting estimators for the unknown parameters

were studied by Rathbun & Cressie (1994). Rathbun (1996) and Rathbun et al. (2007)

considered further the problem when the covariates were only partially observed.

Once a model has been fitted for the intensity function, the next step of the analysis

usually is to assess the goodness-of-fit of the fitted model. A useful diagnostic approach,

when possible, is to transform the fitted model into a homogeneous Poisson process on

the real line (e.g., Ogata, 1988; Schoenberg, 2003). Available testing procedures for

complete spatial randomness can then be used to assess if a homogeneous Poisson pro-

cess is appropriate for the transformed data and therefore to assess if the fitted model

is appropriate for the original data. This procedure is very useful for one dimensional

data but can also be generalized to the spatial Poisson process setting (e.g., Diggle,

1990). Other available procedures include a “deviance residual” approach proposed by

Lawson (1993) and a “smoothed residual field” approach that was recently proposed in

the seminal paper by Baddeley et al. (2005). For the “smoothed residuals”, Baddeley

et al. (2006) gave details on the theoretical properties of the residuals. Both procedures

are intended only for graphical presentations of the respective residuals but can not be

regarded as formal tests. Despite their usefulness, graphical procedures have their limi-

tations due to the arbitrariness associated with the decision process. These procedures

will be more useful if supplemented with formal testing results.

To obtain a formal test, it may at first appears reasonable to just extend the standard
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procedure to test for complete spatial randomness to the inhomogeneous case, say by

comparing the theoretical and empirical K-functions (Diggle, 2003, Ch. 7). Under

the null hypothesis of a good fit, the theoretical and empirical K-functions should be

close. Otherwise we may expect to see a large discrepancy between them. The p-

value of the test can be obtained by comparing a properly defined discrepancy measure

between the theoretical and empirical K-functions that are calculated from the data with

those calculated from simulations of the fitted model. However, we conjecture that this

approach may have a low power to detect a poor fit in the inhomogeneous case. This

is because it looks for the lack-of-fit evidence for the fitted intensity function, which

models the first-order structure of the process, by evaluating the K-function, a function

based on second-order structure of the process. We expect that a more powerful test

can be obtained by evaluating the intensity function directly.

In this paper we develop a new procedure to formally test for the goodness-of-fit of

a fitted spatial Poisson process model. Our method is based on a special type of the

residuals defined in Baddeley et al. (2005) and therefore should also be considered as a

residual analysis approach. Specifically we develop a discrepancy function, Dc(t; θ̂), in

terms of the residuals, where t is a specified distance. As can be seen in Section 2, the

proposed discrepancy function nicely reflects the discrepancy between the fitted intensity

function and the data directly. We derive the variance associated with Dc(t; θ̂) and prove

that it is asymptotically normal with mean zero under the hypothesis that the fitted

model is a good fit. Based on these results, we can formally assess the goodness-of-fit

by simply testing if the mean of Dc(t; θ̂) is larger than 0 for a preselected t. As a direct

consequence of our theoretical results, pointwise confidence intervals can be obtained

for Dc(t; θ̂) at different t values. As a graphical diagnostic procedure, we can then plot

Dc(t; θ̂) together with the obtained pointwise intervals across a reasonable range of t

values so as to facilitate diagnostics.

The rest of the article is organized as follows. In Section 2 we define the discrepancy

function and study its distributional properties. We develop our testing method in

Section 3, and then assess its performance through both a simulation study in Section

4 and and an application to a real data example in Section 5. We give the concluding
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remarks in Section 6. Proofs of theorems are contained in the Appendix.

2. Preliminary Theoretical Results

2·1 Definition of the discrepancy function

Consider a spatial Poisson process N observed in a region A. Throughout the article,

let λ(·) and λc(·; θ) denote the true intensity function of N and a class of candidate

parametric models for λ(·), respectively. Our main interest is to test the null hypothesis

H0 : λ(·) = λ(·; θ0) for some unknown θ0 by using the observed data. Note that the

formulation of our problem is consistent with that of standard goodness-of-fit test for

regression problems (e.g., Kutner et al., 2004, Ch. 3).

In what follows, let θ̂ denote an estimate for θ. Consider a predefined shape S ∈ R2

(e.g., a square or circle). For any point x ∈ A, let B(x, t) be the Borel set that has

the same shape as S but is inflated by the size parameter t and is “centered” at x. For

example, for a square t may be the length of the four sides and for a circle t may be

the diameter of the circle. Let N(x, t) denote the number of events of N in B(x, t)∩A.

Note that N(x, t) is closely related to the scan statistic (e.g., Kulldorff, 1999) in that

the latter is defined as the maximum of N(x, t) over all x such that B(x, t) ⊆ A. For

each x and t, define

rc(x, t; θ̂) = N(x, t)−
∫

B(x,t)∩A

λc(u; θ̂)du. (1)

Note that rc(x, t; θ̂) defined in (1) is a special case of the residuals defined in Baddeley et

al. (2005). If the intensity function is correctly specified, then the squared value of the

residual is an approximately unbiased estimator for the variance of N(x, t). Furthermore,

the Poisson assumption implies that N(x, t) is also an unbiased estimator for the same

quantity. In view of these observations, we thus define the following discrepancy function:

Dc(t; θ̂) =

∫

A

[{rc(x, t; θ̂)}2 −N(x, t)]dx. (2)

To better understand the motivation for the use of Dc(t; θ̂), we now comment on its

properties. To simplify notation, let Λc(x, t; θ̂) denote the integral term in (1). We will

also suppress the dependence of N(x, t), B(x, t), rc(x, t; θ̂), Λc(x, t; θ̂) and Dc(t; θ̂) on
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t and thus rewrite them as N(x), B(x), rc(x; θ̂), Λc(x; θ̂) and Dc(θ̂), respectively. Let

r(x) and Λ(x) be (1) and the integral term in (1), respectively, with λc(u; θ̂) in (1) being

replaced by the true intensity function λ(·). Straightforwardly, it can be seen that

Dc(θ̂) =

∫

A

[{r(x)}2 −N(x)]dx− 2

∫

A

r(x){Λc(x; θ̂)− Λ(x)}dx

+

∫

A

{Λc(x; θ̂)− Λ(x)}2dx. (3)

The expected value of the first term on the right hand side of (3) is equal to zero

since N(x) is a Poisson random variable and thus its mean and variance are equal.

Heuristically if we treat θ̂ as a fixed value (i.e. not random), then the expected value of

the second term is also equal to zero. Note that these two conclusions are true regardless

of how well the fitted model fits the data. Furthermore, if H0 : λ(·) = λc(·; θ0) is true

for some unknown θ0 and θ̂ ≈ θ0, i.e. the fitted model is a good fit, then the last term

of (3) should also be close to zero. As a result, the expected value of Dc(θ̂) should be

close to zero under the null hypothesis, provided that θ̂ estimates θ0 well. If there is a

poor fit, however, λ(·) and λc(·; θ̂) then will be very different and therefore the last term

of (3) will be larger than zero. As a result, the expected value of Dc(θ̂) will be larger

than zero. More specifically, the more λc(·; θ̂) deviates from λ(·), the larger the expected

value of Dc(θ̂) tends to be in general. To assess the goodness-of-fit of a fitted model, we

thus essentially need to assess whether the expected value of Dc(θ̂) is larger than zero.

This implies that an “extremely” large value of Dc(θ̂) should be treated as an evidence

for a poor fit.

We will study the distributional properties of Dc(θ̂) in the next section. Before we

proceed, we comment on the behavior of Dc(θ̂) when the spatial point process is not

Poisson. In this case, the expectation of the first term on the right hand side of (3) is

no longer equal to zero. More specifically, it is generally larger than zero if the process

is positively correlated (e.g., clustered). Thus both the misspecification of the intensity

function model and the violation of the Poisson assumption may yield a larger-than-zero

expected value for Dc(θ̂). For our theoretical development, we assume that the process

is Poisson. The numerical properties of our proposed test when the point process is not

Poisson will be investigated in the simulation study in Section 4.
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2·2 Distributional properties of Dc(θ̂)

To formally compare Dc(θ̂) with zero, we need to study its distributional properties.

For this let D be the discrepancy measure defined in (2) by using the true intensity

function λ(·), that is,

D =

∫

A

[{N(x)− Λ(x)}2 −N(x)]dx, (4)

where Λ(x) =
∫

B(x)∩A
λ(u)du. We will first study the asymptotic distribution of D and

then link it to that of Dc(θ̂). This consideration is primarily for the ease of derivations

since D has a simpler form than Dc(θ̂).

Our asymptotic results are based on an increasing-domain framework. Specifically,

consider a sequence of domains of interest An. Throughout the remainder of the article,

let Rn be R obtained on An, where R is an arbitrary random variable/function defined

on A, e.g., Dn is D in (4) obtained on An. Let |An| and |∂An| denote the area and

the length of the boundary of An, respectively. We assume that for some constants

0 < K1 < K2 < ∞,

K1n
2 ≤ |An| ≤ K2n

2 and K1n ≤ |∂An| ≤ K2n. (5)

Condition (5) essentially requires that An become increasingly large in all directions.

This is typically satisfied by most commonly encountered domain shapes in practice

such as a sequence of square regions with side lengths of order n and circular regions

with radii of order n.

We also assume that the intensity function of N is bounded from both above and

below. That is, there exist constants 0 < C1 < C2 < ∞ such that

C1 ≤ λ(x) ≤ C2 for all x ∈ R2. (6)

Condition (6) guarantees that the variance of Dn is of the same order as the area of the

region on which it is defined. For any class of parametric models under consideration,

this condition can be easily checked.

The following two theorems establish the asymptotic normality for Dn and Dc,n(θ̂n),

respectively.
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Theorem 1. Let σ2
n = 2

∫
An

∫
An
{Λn(x,y)}2dxdy, where Λn(x,y) is Λn(x) obtained on

B(x,y) and B(x,y) = B(x) ∩ B(y) ∩ An. Assume that conditions (5) and (6) hold.

Then

Dn/σn → N(0, 1) in distribution as n →∞.

Proof. See the Appendix.

Theorem 2. Let σ2
c,n(θ̂n) = 2

∫
An

∫
An
{Λc,n(x,y; θ̂n)}2dxdy. Assume that conditions (5)

and (6) hold and λc(·; θ) has bounded second-order derivatives with respect to θ. Under

H0 : λ(·) = λc(·; θ0), if |An|1/4(θ̂n − θ0) = op(1), then

Dc,n(θ̂n)/σc,n(θ̂n) → N(0, 1) in distribution as n →∞.

Proof. See the Appendix.

A subtle issue in practice is to decide which type of asymptotic framework is more

appropriate, e.g., increasing-domain or infill? The latter says that the number of ob-

servations increases with n but the study region remains fixed. This type of framework

appears to be more appropriate for data that are accumulated over time in a fixed region

(e.g., many public health data). For Poisson processes, however, the difference between

these two frameworks is probably not so important due to the complete independence

among events. We note here that our main results continue to be true if we replace t in

(1) by tn where tn = t/n for some fixed t and replace (5) and (6) respectively by

K1 < |An| < K2 and K1 ≤ |∂An| ≤ K2,

and

C1n
2 ≤ λ(x) ≤ C2n

2 for all x ∈ R2.

2·3 Finite sample bias correction for Dc(θ̂)

Theorem 2 provides the theoretical foundation for us to derive the test statistic in the

next section. Note that unlike Dn in Theorem 1, Dc,n(θ̂n) is a biased estimator for zero

due to the use of the random term θ̂n. Although this bias is negligible in the asymptotic

sense, as suggested by Theorem 2, it can be substantial for data with a modest sample

6



size. Let f (i)(θ) be the ith order derivative with respect to θ for an arbitrary real function

f(θ), and for two sequences of random variables an and bn, denote an ∼ bn if an and bn

have the same limiting distribution. To investigate the bias of Dc,n(θ̂n), we will further

assume

|An|1/2(θ̂n − θ0) ∼ {Vn(θ0)}−1Un → N(0, {Vn(θ0)}−1) in distribution, (7)

where

Un =
1√
|An|

{ ∑
y∈N∩An

λ
(1)
c (y; θ0)

λc(y; θ0)
−

∫

An

λ(1)
c (x; θ0)dx

}
, (8)

Vn(θ0) =
1

|An|
∫

An

λ
(1)
c (x; θ0){λ(1)

c (x; θ0)}′
λc(x; θ0)

dx. (9)

Condition (7) is typically satisfied if θ̂n is the maximum likelihood estimator of θ0. Also

define

Wn(θ0) =
1

|An|
∫

An

Λ(1)
c,n(x; θ0){Λ(1)

c,n(x; θ0)}′dx, (10)

By using Taylor Series expansion at θ0 for the last two terms of (3), we can then ap-

proximate {Dc,n(θ̂n)−Dn} by

|An|(θ̂n − θ0)
′Wn(θ0)(θ̂n − θ0)− 2(θ̂n − θ0)

′
∫

An

rn(x)Λ(1)
c,n(x; θ0)dx. (11)

The expected value of the first term in (11) can be approximated by the trace of the

matrix Wn(θ0)Vn(θ0)
−1 since it can be treated as a quadratic form of the random vector

|An|1/2(θ̂n− θ0), which converges to a multivariate normal distribution due to condition

(7). For the second term, lengthy yet elementary derivations yield that its expected

value can be approximated by

− 2

|An|
∫

An

{Λ(1)
c,n(x; θ0)}′Vn(θ0)

−1Λ(1)
c,n(x; θ0)dx.

Thus, the bias of Dc,n(θ̂n) can be approximated by

− 2

|An|
∫

An

{Λ(1)
c,n(x; θ0)}′Vn(θ0)

−1Λ(1)
c,n(x; θ0)dx + trace{Wn(θ0)Vn(θ0)

−1}, (12)

where Vn(θ0) and Wn(θ0) are defined in (9) and (10), respectively. In practice we

replace θ0 in (12) by its estimates θ̂n so as to obtain an estimate for the bias of Dc,n(θ̂n).
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An alternative approach, which is much simpler in terms of programming effort, is

to simulate data from the fitted model λc(·; θ̂n) and then calculate Dc,n(
ˆ̂
θn) on each

simulated realization. An estimate for the bias can be defined as the sample average of

all obtained Dc,n(
ˆ̂
θn). This approach is being used in the simulation study.

3. The Proposed Method

Based on the theoretical results in the last section, we develop a formal testing

method to assess the goodness-of-fit for the fitted model λc(·; θ̂). Specifically for a

prespecified t, we calculate the statistic T (θ̂) = {Dc(θ̂) + bias(θ̂)}/σc(θ̂), where bias(θ̂)

is an estimate for the bias term in (12) and σ2
c (θ̂) = 2

∫
A

∫
A
{Λc(x,y; θ̂)}2dxdy. Following

Theorem 2, T (θ̂) is approximately a standard normal random variable under H0 : λ(·) =

λc(·; θ0). For an α level test for H0, we reject H0 and thus conclude a lack-of-fit if

T (θ̂) > Zα, where Zα is the upper-tail critical value at the α level from the standard

normal distribution.

To apply the proposed method, it is important to select an appropriate t. Generally

a very small t will lead to a test with little power due to the insufficient sample size used

to calculate [{rc(x; θ̂)}2−N(x)] for each x, based on which Dc(θ̂) in (2) is defined. This

is because for a small t there is often too much noise in [{rc(x; θ̂)}2 − N(x)], which in

turn will hide any signal for the lack-of-fit. However, a large t does not necessarily lead

to improved power since information for local lack-of-fit may then be smoothed out. In

particular, the magnitude of rc(x; θ̂) may be too small compared to N(x). Furthermore,

a large t value can also deteriorate the size of the test due to two reasons. Firstly,

note the fact that [{rc(x; θ̂)}2 − N(x)] is skewed to the right. If t is too large, then

we won’t have enough replicates for [{rc(x; θ̂)}2 − N(x)] so the normal approximation

won’t work well. Secondly, a large t will also lead to increased edge effects, where edge

effects here refer to that events near the boundary are given less weights than those in

the center when forming Dc(θ̂). This will further reduce the effective sample size. Thus

t must be selected carefully. Note that this is not a problem unique to our test statistic.

When calculating the scan statistic, for example, one also needs to decide the size of the

scanning window (e.g., Kulldorff, 1999). We will perform a simulation study in the next
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section to evaluate the effect of t on the performance of the test.

It will be desirable to have a data-driven approach for the selection of t. To do so,

we note that t affects the test mostly through its effect on rc(x; θ̂). Thus the problem

to select t for Dc(θ̂) can be roughly treated as the problem to select the bandwidth used

to obtain the residuals rc(x; θ̂), where x ∈ A. For the latter Baddeley et al. (2005)

discussed several possible data-driven methods. We suggest to use one of these methods

to select the bandwidth for rc(x; θ̂) and thus to select t for Dc(θ̂). From a practical point

of view, our proposal is reasonable since one may wish to first obtain and examine the

“smoothed” residual plot (i.e. the plot of rc(x; θ̂)). Our formal testing procedure can

then be used to formally assess the goodness-of-fit based on the obtained residual plot.

In practice, we can also plot Dc(θ̂) and/or T (θ̂) with their respective (pointwise) upper

confidence bounds for a range of t values. This graphical presentation of the results will

enable us to quickly examine the evidence in a more systematic way.

4. Simulation Study

4·1 Simulation design

We simulated both inhomogeneous Poisson processes and inhomogeneous Poisson

cluster processes (Waagepetersen, 2007) on a unit square. For both types of processes,

the intensity function was given by α exp(−βx) and α exp{−β sin(2πx)}, where x was

the x coordinate value of an arbitrary point on the unit square. Throughout this section,

we will refer to the first model as the linear model and the second as the sine model.

To simulate the Poisson cluster process, we first simulated the parent process by using

a homogeneous Poisson process with intensity equal to 50. For each parent, we then

generated a Poisson number of offspring, where the location of each offspring relative

to its parent was determined by a radially symmetric Gaussian dispersal variable (e.g.,

Diggle, 2003, P. 66). We set the standard deviation of the dispersal variable at .04.

Finally, we thinned the offspring process independently with a thinning probability equal

to 1 − exp(−βx), as suggested by Waagepetersen (2007). We set β = 1, 2. Note that

the larger β was, the more inhomogeneous the process was. For each type of intensity

function and for each given β, we manipulated the value of α such that the expected
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number of events per realization (denoted by µ) was roughly 100 and 400. In terms of

the asymptotic frameworks discussed in Section 2, the setting being considered here was

an infill asymptotic framework.

We used a square as the shape S for computational convenience. To study the

effect of t on the performance of the test, we set the side length t equal to .1, .2 and

.3. For each realization and each given t, we applied the proposed testing method to

assess the goodness-of-fit for the fitted linear and sine models. We also selected the t

value by least-squares cross-validation (Silverman, 1999). To reduce computational time,

we considered only fifteen equally spaced t values between .02 and .3. The “optimal”

t selected by least-squares cross-validation could be larger than .3. We nevertheless

imposed an upper limit .3 for t since it did not appear wise to use a larger t for a unit

square. Recall from the discussion in Section 3 that we needed t to be small enough so

that the normal approximation could work.

To compare with existing methods, we also applied two other competing tests. The

first was a simulation-based approach by comparing the empirical and theoretical K-

functions. We will refer to this approach as the K-function approach. The second

approach was based on the idea that a spatial Poisson process could be transformed

to be a homogeneous Poisson process on [0,1] by using a proper transformation. The

test was then done by using standard goodness-of-fit tests to test for uniformity for the

transformed data. We will refer to the second approach as the transformation approach.

For the K-function approach, let K̂(r) denote the non-stationary version of the

empirical K-function at lag r as defined in Baddeley et al. (2000). We used the following

popular discrepancy measures between K̂(r) and K(r) (e.g., Ho & Chiu, 2007):

DK1 = sup
r∈[0,r0]

|K̂(r)1/2 −K(r)1/2|,

DK2 =

∫ r0

0

{K̂(r)1/2 −K(r)1/2}2dr,

where r0 = .125, .062 for µ = 100, 400, respectively, and K(r) = πr2. The choices of r0

were based on the recommendation of Ripley (1979). The square root transformation of

K̂(r) was suggested by Besag (1977) as a variance stabilizer. To perform the test, we
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simulated 39 realizations from the fitted model and obtained DK1 and DK2 for each

realization. We rejected H0 if DK1 (or DK2) from the original realization ranked in the

top 10% of the pooled DK1 (or DK2). This led to tests with a nominal size equal to

10%. In our simulation, the test based on DK2 was slightly more powerful than that

based on DK1. We thus will present only the results for the former.

For the transformation approach, let I(·) denote an indicator function. A referee sug-

gested to transform any given event of the process, say x, to be µ(−∞, f(x)]/µ(−∞,∞),

where f(x) was a known, continuous function of location and

µ(−∞, t] =

∫

A

I{f(u) ≤ t}λc(u; θ̂)du.

In the above, λc(·) was either the linear model or the sine model. For the function

f(·), we used f(x) = x for the linear model and f(x) = sin(2πx) for the sine model.

We then calculated the Kolmogorov-Smirnov test statistic by comparing the empirical

distribution of the transformed process with a uniform distribution on [0, 1]. To perform

the test, we simulated 39 realizations from the fitted model and obtained the same test

statistic for each realization. We rejected H0 if the calculated statistic from the original

realization ranked in the top 10% of the pooled statistics. This in turn led to a test with

a nominal size equal to 10%.

4·2 Simulation results

Table 1 lists percentages of rejections at the 10% nominal level from 500 simulations in

the Poisson process case. Note that when the true intensity model was used, the resulting

percentages of rejections (i.e., sizes) were all close to the nominal size. This provided

evidence that our asymptotic results were appropriate for these models and data. When

a wrong intensity model was used, the resulting percentages of rejections (i.e., powers)

increased as the expected number of events increased. This was in accordance with

the general knowledge that a larger sample size should lead to a more powerful test.

When t increased, the power first increased and then decreased. This agreed with our

general comment regarding the effect of t on the test. Simulation results not included

also suggested that a too large t value (say t = .4) not only deteriorated the size of the

test but also lowered the power significantly.
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Heuristically, we may treat |A|/|B(·)| as the number of independent replicates for a

region of the same size as B(·). In our simulation, |A| = 1 and |B(·)| = t2. Thus t = .3

roughly corresponded to 11 independent replicates. Note that the actual sample size

might be slightly bigger since D(θ̂) integrated [{rc(x; t; θ̂)}2−N(x, t)] over all x ∈ A, but

not over just a set of xi, i = 1, · · · , |A|/|B(·)|, such that ∪iB(xi) = A and ∩iB(xi) = ∅.
Nevertheless it does not appear appealing to use an even larger t. One possibility in

practice is to set an upper limit (say .3) for t and then use least-squares cross-validation

to select t. From Table 1 we see this approach worked well in our simulation.

Figure 1 plots the true intensity model (linear or sine) and the average of the fitted

incorrect intensity models obtained from the simulation for each situation. For the

models being considered here, the difference between the true and the incorrect models

was higher when the true model was the sine model for each fixed β, and increased as β

increased for each fixed model. Reflected from the powers in Table 1, we see that there

was a much higher power to detect a lack-of-fit when the sine model was the true model

and when β = 2.

When compared with the K-function approach, we see our test was much more

powerful in all cases. The improvement often was quite substantial. For example, when

µ = 400 was used and the true model was the sine model, the proposed test rejected

the incorrect model 100% of the time whereas the K-function approach rejected it only

62.8% (for β = 1) and 75.8% (for β = 2) of the time. This difference was likely due

to the fundamental difference when deriving the test statistics for these two methods.

Our approach first calculated the local discrepancy between the data and the fitted

intensity function directly and then combined them to derive a global measure for the

overall discrepancy. The K-function approach, on the other hand, first calculated a

number of “indirect” global discrepancy measures (i.e. K̂(r), r ∈ [0, r0], this is a global

measure since each K̂(r) was obtained by pooling all data together) and then combined

these global measures to derive another global measure for the overall discrepancy. As a

result, valuable information related to local discrepancies might have been diluted if not

lost completely. This in turn led to a poor power for the K-function approach. When

compared with the transformation approach, we see our test was more powerful in the
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linear model case, and was comparable in the sine model case. The K-function approach

was less powerful than the transformation approach consistently.

Table 2 lists percentages of rejections at the 10% nominal level from 500 simulations

in the Poisson cluster process case. Only the results in the linear model case were

included. The main findings in the sine model case were similar and thus were omitted.

Note that regardless of which intensity model was fitted, all three tests concluded a lack-

of-fit at a rate much higher than the nominal 10% level. In particular, the percentages

of rejections were either equal to or close to one for both the proposed approach and

the K-function approach. This indicated the high power of these approaches to detect a

violation of the Poisson assumption. When µ = 100, our test still slightly outperformed

the K-function approach. However, the improvement became much smaller. When

µ = 400, both approaches rejected H0 all the time. The transformation approach,

however, rejected H0 much less frequently especially when µ = 100. Note that the

transformation approach was defined in terms of the intensity function only. Thus it

was not surprising to see its low power to detect a violation of the Poisson assumption

since this is related to the higher-order structures of the process.

5. An Application

We applied our testing method to a real data example from an epidemiological study.

Figure 2 plots the locations of 58 cases of larynx cancer and 978 cases of lung cancer in

the Chorley and South Ribble Health Authority of Lancashire during 1974-1983. The

data were given and analyzed in Diggle (1990). The main interest of the study is to

model the locations of larynx cancer cases in relation to the location of an industrial

incinerator. To do so, Diggle (1990) fitted an inhomogeneous Poisson process model

to the data where the distance from each larynx cancer case to the location of the

incinerator served as a covariate. Specifically, he used the following model

λ(x) = ρλ0(x){1 + α exp(−β||x− x0||2)}.

In the above, ρ is the overall number of events per unit area, λ0(·) is the spatial intensity

of the population at risk and x0 is the location of the incinerator. To estimate λ0(·),
the lung cancer cases were treated as a surrogate for the susceptible population. Diggle
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(1990) estimated λ0(·) by kernel smoothing the lung cancer cases, using an isotropic

Gaussian kernel with standard deviation σ = .15 km. Diggle (1990) obtained the esti-

mates (α̂, β̂) = (23.67, 0.91) using a maximum likelihood approach, whereas Diggle &

Rowlinson (1994) obtained the estimates (α̂, β̂) = (33.69, 1.11) using a conditional ap-

proach. Both analyses indicated raised incidence of larynx cancers near the incinerator.

To evaluate the goodness-of-fit for a fitted model, Diggle (1990) ordered the larynx

cancer cases in an increasing order in terms of their distances to x0, where x0 is the

location of the incinerator. Let Ei denote the disc with center x0 and radius equal to

the ith ordered distance. The following quantity was then defined

Ti =

∫

Ei

λ0(x){1 + α̂ exp(−β̂||x− x0||2)}, i = 1, · · · , 58.

Under the fitted model, Ti can be roughly treated as a realization from a homogeneous

one-dimensional Poisson process. The goodness-of-fit of the fitted model can then be

evaluated by testing if Ti are from a homogeneous Poisson process. A satisfactory fit

was concluded for the first set of estimates under this approach (Diggle, 1990). Recently

Baddeley et al. (2005) assessed the goodness-of-fit for the second model by using a

residual analysis approach. Specifically, they considered the residuals in (1) where x

therein was equal to x0 and the Borel set B was a circle with radius t. By comparing

the obtained residuals and their respective 2σ-limits, Baddeley et al. (2005) concluded

a slight lack of fit near t = 0 for the second model.

We performed our proposed goodness-of-fit test for both models. As in the simula-

tion, we used a square for the shape S. Figure 3 plots the test statistic values for each

model, at various side lengths (i.e., t) for the squares being used, and the corresponding

99% confidence limits. There was a striking evidence that none of the two fitted models

appeared to be a good fit since all T (θ̂) were above the 99% confidence limits. Note that

our conclusion is contradictory to that of Diggle (1990) in which the author acknowl-

edged the limit of the approach being used therein. Furthermore, our analysis formally

confirmed the lack-of-fit for the second model as detected by Baddeley et al. (2005). In

a personal communication, Peter Diggle suggested that the lack-of-fit for the first model

was likely due to the biased estimate of λ0(·) that was produced by the kernel smoothing
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method. The reliability of these estimates may be in question since λ0(·) was used in the

estimation of the parameters. On the other hand, the estimates (α̂, β̂) = (33.69, 1.11)

were obtained by using the conditional approach in Diggle & Rowlinson (1994) which

eliminated the need to estimate λ0(·). As a result, we believe that these results are more

reliable, although our testing method still indicated a lack-of-fit. It should be noted that

an estimate of λ0(·) was required in order to calculate our test statistics for both fitted

models. This in turn affected the calculated test statistics. Thus our analysis is only an

illustrating example but not a thorough analysis.

6. Concluding remarks

In this paper we have introduced a formal testing method to assess the goodness-

of-fit of a fitted inhomogeneous spatial Poisson process model. The test is based on a

discrepancy measure function Dc(t; θ̂) that is constructed in terms of the residuals from

the fitted model. We have theoretically justified the validity of the testing approach and

compared through simulations its performance with the traditional K-function approach

and an approach by transforming the data into a homogeneous Poisson process. In

our simulations, the proposed test is consistently more powerful than the K-function

approach, and performed competitively with, if not better than, the transformation

approach to detect a lack-of-fit due to a misspecified intensity function alone. If the

process is not Poisson, our test has a slightly higher (or similar) power to detect a

lack-of-fit when compared to the K-function approach, and a much higher power when

compared to the transformation approach. Based on evidence from our simulation study,

we recommend selecting t within a reasonable predefined range by least-squares cross-

validation.

When a lack-of-fit is detected, we need to decide whether the lack-of-fit is due to

the use of an incorrect intensity function model or the existence of correlation, i.e. the

process is not Poisson. This is often a difficult issue as heterogeneity in intensity and

correlation especially clustering can lead to point patterns with similar characteristics

(e.g., Diggle, 2003, Ch. 9). Brix et al. (2001) proposed a method to test if an observed

spatial point pattern could be treated as a realization from an inhomogeneous spatial
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Poisson process. Their approach did not require any specific parametric form on the in-

tensity function. One sensible approach in practice may be to first apply their method to

evaluate if the Poisson assumption is reasonable. If the assumption is not rejected, then

the focus of the analysis should be on modeling the intensity function alone. Otherwise,

it is necessary to consider alternative processes that allow correlation in the data.
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Appendix

Proofs

Derivation for the variance of D. Let N(x,y) and r(x,y) be N(x) and r(x) defined

on B(x,y), respectively. We have

var(D) =

∫

A

∫

A

E{[{r(x)}2 −N(x)][{r(y)}2 −N(y)]}dxdy

=

∫

A

∫

A

E{[{r(x,y)}2 −N(x,y)]2}dxdy

= 2

∫

A

∫

A

{Λ(x,y)}2dxdy.

The last equality is due to the fact that for any Poisson random variable X with an

expected value µ,

E[{(X − µ)2 −X}2] = 2µ2.

Proof of theorem 1. We shall denote several constants by the same letter c. To prove

Theorem 1, we use kn subsquares to approximate An. Each of the subsquares has a side

length l where l = cnα for some 0 < α < 1. Let Ai
l be the ith subsquare and A′

n = ∪iA
i
l.

Condition (5) guarantees that |A′
n|/|An| → 1 as n →∞. Let Di

l be D calculated on Ai
l.

Define D′
n =

∑kn

i Di
l and (σ′n)2 = var(D′

n).
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We first want to show that

Dn

σn

− D′
n

σ′n
→ 0 in probability. (13)

To show the above, we only need to show that

cov(Dn, D′
n)

σnσ′n
→ 1.

This follows from some lengthy yet elementary algebra due to the fact that |A′
n|/|An| → 1

and condition (6). Then (13) holds from Chebyshev’s inequality.

We then want to show that

D′
n

σ′n
→ N(0, 1) in distribution. (14)

To prove (14), we first verify the following

sup
n

E(|Dl|4) < cl4. (15)

Note that (σ′n)2 is of order n2 due to condition (6) and the way in which the subblocks

were constructed. (14) then follows trivially from (15) by the application of the Lya-

punov’s theorem since Di
l are independent.

In what follows, let
∫

stand for
∫

Dl
unless specified otherwise. Define B−1(x) = {s :

x ∈ B(s)} ∩Al and B−1(x,y) = B−1(x)∩B−1(y). To prove (15), we first rewrite Dl as

[ ∑∑

x6=y

|B−1(x,y)| −
∫
{Λ(s)}2ds

]
− 2

[ ∑
x

∫

B−1(x)

Λ(s)ds−
∫
{Λ(s)}2ds

]
.

Denote the two terms in the big brackets by Fl and Gl, respectively. A sufficient condition

for (15) to hold is that

sup
n

E(|Fl|4) < cl4 and sup
n

E(|Gl|4) < cl4.

Let g(x) =
∫

B−1(x)
Λ(s)ds. Tedious yet elementary algebra shows

E{(Gl)
4} = 6

[ ∫
{g(x)}2λ(x)dx

]2

+

∫
{g(x)}4λ(x)dx.
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Clearly E{(Gl)
4} < cl4 for some c due to condition (6). Furthermore

(Fl)
4 =

{∑∑

x6=y

|B−1(x,y)|
}4

+

{∫ ∫
|B−1(u,v)|λ(u)λ(v)dudv

}4

− 4

{∑∑

x6=y

|B−1(x,y)|
}3 ∫ ∫

|B−1(u,v)|λ(u)λ(v)dudv

+ 6

{∑∑

x6=y

|B−1(x,y)|
}2{ ∫ ∫

|B−1(u,v)|λ(u)λ(v)dudv

}2

− 4
∑∑

x6=y

|B−1(x,y)|
{ ∫ ∫

|B−1(u,v)|λ(u)λ(v)dudv

}3

.

Some simple algebra shows that E{(Fl)
4} can be written in the sum of seven integrals,

ranging from a two-fold integral to an eight-fold integral. Note that B−1(x,y) 6= ∅
only on a bounded set for each fixed x. This fact leads to that all the two- to five-fold

integrals are of order no higher than l4. The six-fold integral, ignoring a multiplicative

constant, can be shown as follows
[ ∫ ∫ ∫

|B−1(x,y)||B−1(x, z)|{λ(x)}2λ(y)λ(z)dxdydz

]2

< cl4.

Lastly, it can be shown that the seven-fold and the eight-fold integrals are both equal

to zero. Thus (15) holds.

Proof of theorem 2. Under H0 : λ(·) = λc(·; θ0) for some θ0, we have

Dc,n(θ̂n) = Dn−2

∫

An

rn(x){Λc,n(x; θ̂n)−Λc,n(x; θ0)}dx+

∫

An

{Λc,n(x; θ̂n)−Λc,n(x; θ0)}2dx.

Let Λ
(i)
c,n(·; θ) be the ith order derivative of Λc,n(·; θ) with respect to θ. By Taylor series

expansions,

Λc,n(x; θ̂n)− Λc,n(x; θ0) = (θ̂n − θ0)
′Λ(1)

c,n(x; θ∗n),

Λc,n(x; θ̂n)− Λc,n(x; θ0) = (θ̂n − θ0)
′Λ(1)

c,n(x; θ0) + (θ̂n − θ0)
′Λ(2)

c,n(x; θ∗∗n )(θ̂n − θ0),

where both θ∗n and θ∗∗n are between θ̂n and θ0. Thus,

Dc,n(θ̂n)−Dn = (θ̂n − θ0)
′
[ ∫

An

Λ(1)
c,n(x; θ∗n){Λ(1)

c,n(x; θ∗n)}′dx
]
(θ̂n − θ0)

− 2(θ̂n − θ0)
′
{ ∫

An

rn(x)Λ(2)
c,n(x; θ∗∗n )dx

}
(θ̂n − θ0)

− 2(θ̂n − θ0)
′
∫

An

rn(x)Λ(1)
c,n(x; θ0)dx.
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Note that σ2
n is of order |An|1/2 due to condition (6). Thus to prove Theorem 2, we only

need to show that

{Dc,n(θ̂n)−Dn}/|An|1/2 → 0 in probability,

and

σc,n(θ̂n)/σn → 1 in probability.

The first is true if both Λ(1)(x; θ) and Λ(1)(x; θ) are bounded in a small neighborhood of

θ0 and θ̂n − θ0 = op(1/|An|1/4). The second is true due to condition (6). Thus Theorem

2 is proved.
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Figure 1: Plots of the true intensity function model (solid line) and the average of
the fitted incorrect models (dashed line) versus x. The x axes in the plots are the x
coordinate values on a unit square and the y axes are the true and estimated intensity
function values. The top two plots are for the linear model and the bottom plots are for
the sine model, where β = 1, 2 from the left to right.
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Figure 2: Locations of larynx and lung cancers. · stands for lung cancer, × stands for
larynx cancer and 4 stands for the incinerator.
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Figure 3: Residual plots for the Larynx cancer data. The y axis label T stands for
the test statistic T (θ̂), calculated at different t values, where the t values are defined in
meters. The top plot is for the model with (α̂, β̂) = (23.67, 0.91) and the bottom plot is
for that with (α̂, β̂) = (33.69, 1.11). The solid lines are the test statistics and the dashed
lines are the 99% confidence limits under each model.
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Table 1: Percentages of rejections at the 10% nominal level in the Poisson process case.
Test 1 and Test 2 are the proposed test with t fixed and selected by least-squares cross-
validation, respectively. Test 3 is the test based on the K-functions. Test 4 is the test
based on transformation to a homogeneous Poisson process.

Test 1 with different t Test 2 Test 3 Test 4
Model µ β 0.1 0.2 0.3

Size Linear 100 1 0.096 0.096 0.084 0.094 0.110 0.064
2 0.130 0.130 0.104 0.110 0.072 0.070

400 1 0.096 0.094 0.082 0.090 0.114 0.080
2 0.112 0.098 0.078 0.086 0.090 0.090

Sine 100 1 0.100 0.100 0.076 0.094 0.080 0.052
2 0.098 0.108 0.080 0.096 0.094 0.060

400 1 0.112 0.082 0.062 0.074 0.092 0.066
2 0.126 0.114 0.088 0.110 0.078 0.078

Power Linear 100 1 0.162 0.200 0.162 0.166 0.112 0.124
2 0.400 0.482 0.436 0.464 0.164 0.284

400 1 0.354 0.466 0.424 0.442 0.136 0.252
2 0.944 0.994 0.990 0.988 0.630 0.840

Sine 100 1 0.550 0.728 0.712 0.730 0.192 0.902
2 0.996 1.000 1.000 1.000 0.206 1.000

400 1 1.000 1.000 1.000 1.000 0.628 1.000
2 1.000 1.000 1.000 1.000 0.758 1.000

Table 2: Percentages of rejections at the 10% nominal level in the Poisson cluster process
case. The true intensity model is the linear model. Test 1 and Test 2 are the proposed
test with t fixed and selected by least-squares cross-validation, respectively. Test 3 is
the test based on the K-functions. Test 4 is the test based on transformation to a
homogeneous Poisson process.

Test 1 with different t Test 2 Test 3 Test 4
Model µ β 0.1 0.2 0.3
Linear 100 1 0.988 0.972 0.892 0.978 0.944 0.382

2 0.994 0.980 0.886 0.978 0.834 0.434
400 1 1.000 1.000 1.000 1.000 1.000 0.826

2 1.000 1.000 1.000 1.000 1.000 0.918
Sine 100 1 0.988 0.978 0.904 0.974 0.964 0.294

2 0.998 0.988 0.956 0.990 0.968 0.466
400 1 1.000 1.000 1.000 1.000 1.000 0.732

2 1.000 1.000 1.000 1.000 1.000 0.806
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